Grassmann algorithms for low rank approximation of matrices with missing values

نویسندگان
چکیده

منابع مشابه

Randomized algorithms for the low-rank approximation of matrices.

We describe two recently proposed randomized algorithms for the construction of low-rank approximations to matrices, and demonstrate their application (inter alia) to the evaluation of the singular value decompositions of numerically low-rank matrices. Being probabilistic, the schemes described here have a finite probability of failure; in most cases, this probability is rather negligible (10(-...

متن کامل

Low-rank Matrices with Missing Data

A technique for building consistent 3D reconstructions from many views based on fitting a low rank matrix to a matrix with missing data is presented. Rank-four submatrices of minimal, or slightly larger, size are sampled and spans of their columns are combined to constrain a basis of the fitted matrix. The error minimized is expressed in terms of the original subspaces which leads to a better r...

متن کامل

Structured Low-Rank Approximation with Missing Data

We consider low-rank approximation of affinely structured matrices with missing elements. The method proposed is based on reformulation of the problem as inner and outer optimization. The inner minimization is a singular linear least-norm problem and admits an analytic solution. The outer problem is a nonlinear least squares problem and is solved by local optimization methods: minimization subj...

متن کامل

Approximation Algorithms for l0-Low Rank Approximation

For any column A:,i the best response vector is 1, so A:,i1 T − A 0 = 2 n − 1 = 2(1 − 1/n) OPTF 1 OPTF 1 = n Boolean l0-rank-1 Theorem 3. (Sublinear) Given A ∈ 0,1 m×n with column adjacency arrays and with row and column sums, we can compute w.h.p. in time O min A 0 +m + n, ψB −1 m + n log(mn) vectors u, v such that A − uv 0 ≤ 1 + O ψB OPTB . Theorem 4. (Exact) Given A ∈ 0,1 m×n with OPTB / A 0...

متن کامل

Approximation Algorithms for $\ell_0$-Low Rank Approximation

We study the l0-Low Rank Approximation Problem, where the goal is, given anm×nmatrix A, to output a rank-k matrix A for which ‖A′ −A‖0 is minimized. Here, for a matrix B, ‖B‖0 denotes the number of its non-zero entries. This NP-hard variant of low rank approximation is natural for problems with no underlying metric, and its goal is to minimize the number of disagreeing data positions. We provid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BIT Numerical Mathematics

سال: 2010

ISSN: 0006-3835,1572-9125

DOI: 10.1007/s10543-010-0253-9